
SimilarityLab
Release 0.0.1dev

Apr 07, 2020





Contents:

1 Getting Started 1

2 Indices and tables 5

Index 7

i



ii



CHAPTER 1

Getting Started

En es parte aprenderemos a utilizar el modulo

class SimiLab.tempName(matrices, yearDict, vocabularies)
This class will allow you to track how words changes across time using embedding matrices of a given corpus.
These matrices should be aligned with Procrustes.

Parameters

• matrices (array_like) – Embedding matrices

• yearDict (dict) – Stores the row index for a given word for each matrix

• vocabularies (dict) – Need to define

checkProjection()
Checks if the model’s matrices have been projected by the user. Returning the state of projection.

Parameters None –

Returns out – False if the matrices are not projected. True if the matrices are projected.

Return type bool

findSimilars2Vec(vector, year, threshold=0, maxWords=None)
Finds the most similar words within a word2vec embedding matrix. This function computes the cosine
similarities between embedding vectors and a given vector. Returning the most similar words within a
given treshold.

Parameters

• vector (array_like) – Input Vector. Must match embedding dimension.

• year (int) – Choosen year.

• threshold (float) – Minimun cosine similarity allowed to consider a word ‘close’
to the given vector. If left blank, the default value is 0, which allows for all vectors to be
considered.

• maxWords (int) – Maximum number of words to be returned as most similar. If left
blank, the default value is ‘None’, which allows for all vectors to be considered.

1



SimilarityLab, Release 0.0.1dev

Returns out – A dictionary containing the words found and its cosine similarities with respect
to given input vector.

Return type dict

Raises ValueError – if ‘treshold’ is a negative floating point number, or it’s value is greater
than 1.0. if ‘year’ is not present in the current data.

Examples

>>> ma = [[-1,-2,-3],[4,5,6],[7,8,9]]
>>> mb = [[1,2.1,3],[4.2,4.8,6],[7.02,8,9.3]]
>>> mc = [[1.1,2.2,3.1],[4.23,5,6],[7.03,8,9.32]]

>>> matrices = [ma, mb, mc]
>>> yearDict = {1990:0, 1991:1, 1995:2}
>>> vocab1990 = {'martin':0, 'pablo':1, 'carlos':2}
>>> vocabularies = [vocab1990]

>>> tempObject = tempName(matrices, yearDict, vocabularies)

>>> newVec = tempObject.findSimilars([1,2,3], 3, 1990)

>>> print(newVec)

>>> {'pablo': 0.9746318461970761, 'carlos': 0.9594119455666702, 'martin': -1.
→˓0}

findSimilars2Word(word, year, threshold=0, maxWords=None)
Finds the most similar words within a word2vec embedding matrix. This function computes the cosine
similarities between embedding vectors and a given word. Returning the most similar words within a given
treshold.

Parameters

• word (string) – Input Word. Must be part of selected year’s vocabulary.

• year (int) – Choosen year.

• threshold (float) – Minimun cosine similarity allowed to consider a word ‘close’
to the given vector. If left blank, the default value is 0, which allows for all vectors to be
considered.

• maxWords (int) – Maximum number of words to be returned as most similar. If left
blank, the default value is ‘None’, which allows for all vectors to be considered.

Returns out – A dictionary containing the words found and its cosine similarities with respect
to given input word.

Return type dict

Examples

>>> ma = [[-1,-2,-3],[4,5,6],[7,8,9]]
>>> mb = [[1,2.1,3],[4.2,4.8,6],[7.02,8,9.3]]
>>> mc = [[1.1,2.2,3.1],[4.23,5,6],[7.03,8,9.32]]

2 Chapter 1. Getting Started



SimilarityLab, Release 0.0.1dev

>>> matrices = [ma, mb, mc]
>>> yearDict = {1990:0, 1991:1, 1995:2}
>>> vocab1990 = {'martin':0, 'pablo':1, 'carlos':2}
>>> vocabularies = [vocab1990]

>>> tempObject = tempName(matrices, yearDict, vocabularies)
>>> newVec = tempObject.findSimilars2Word('pablo', 3, 1990)
>>> print(newVec)

{'pablo': 1.0, 'carlos': 0.9981908926857268, 'martin': -0.974631846197076}

getEvol(w1, y1, y2)
Finds a given word’s evolution between two years. This function computes the cosine similarity between
the vectorized representation of a given word in one year and the same word in a different year. Returning
said cosine similarity.

Parameters

• y1 (int) – First choosen year.

• w1 (string) – Input word. Must be present in y1 and y2.

• y2 (int) – Second choosen year.

Returns out – Cosine similarity between the obtained vectors from w1 in both years.

Return type float

getEvolByStep(word)
Finds one word’s evolution throughout all years. This function computes the cosine similarities between
the vectorized representation of a given word from one year to the next, covering all years.

Parameters word (string) – Choosen word.

Returns out – A list containing all cosine similarities from one year to the next. If the word is
missing from one of the two compared years, ‘missing’ is returned in the list’s corresponding
position.

Return type array_like

getSim(w1, y1, w2, y2)
Finds the similarity between two selected words in two given years. This function computes the cosine
similarity between the vectorized representation of a first word in a selected year, and the vector for a
second word in another year. Returning the cosine similarity between the two vectors.

Parameters

• y1 (int) – First choosen year.

• w1 (string) – First input word. Must be present in y1.

• y2 (int) – Second choosen year.

• w2 (string) – Second input word. Must be present in y2.

Returns out – Cosine similarity between the obtained vectors from w1 and w2.

Return type float

getVector(word, year)
Finds the vectorized representation of a given word within a word2vec embedding matrix. This function
looks for a chosen word in a given year’s vocabulary and, if posible, identifies it’s corresponding vector.
Returning the vectorized representation of the word.

Parameters

3



SimilarityLab, Release 0.0.1dev

• word (string) – Input Word. Must be part of selected year’s vocabulary.

• year (int) – Choosen year.

Returns out – The selected word’s vectorized representation.

Return type array_like

Raises ValueError – if ‘word’ is not present in the year’s vocabulary. if ‘year’ is not present
in the current data.

Examples

>>> ma = [[-1,-2,-3],[4,5,6],[7,8,9]]
>>> mb = [[1,2.1,3],[4.2,4.8,6],[7.02,8,9.3]]
>>> mc = [[1.1,2.2,3.1],[4.23,5,6],[7.03,8,9.32]]
>>> matrices = [ma, mb, mc]
>>> yearDict = {1990:0, 1991:1, 1995:2}
>>> vocab1990 = {'martin':0, 'pablo':1, 'carlos':2}
>>> vocabularies = [vocab1990]
>>> tempObject = tempName(matrices, yearDict, vocabularies)
>>> newVec = tempObject.getVector('pablo', 1990)
>>> print(newVec)

[4, 5, 6]

getVectorPosNeg(positives, negatives, year)
This function obtains a vector by computing the sum of all the vectorized words in ‘positives’ and sub-
tracting all vectorized words from ‘negatives’. Returning said vector.

Parameters

• positives (array_like) – All words to add to resulting vector.

• negatives (array_like) – All words to subtract from resulting vector.

• year (int) – Chosen year.

Returns out – Resulting vector from adding all positives and subtracting all negatives

Return type array_like

Examples

projectMatrices()
Proyects all matrices and vocabularies from oldest to newest. This function progressively adds missing
words from the oldest matrices and vocabularies to the newer ones, resulting in a complete vocabulary for
the final year and a matrix with all the word’s vectorized representations.

Parameters None –

Returns out – Nothing.

Return type None

4 Chapter 1. Getting Started



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5



SimilarityLab, Release 0.0.1dev

6 Chapter 2. Indices and tables



Index

C
checkProjection() (SimiLab.tempName method),

1

F
findSimilars2Vec() (SimiLab.tempName method),

1
findSimilars2Word() (SimiLab.tempName

method), 2

G
getEvol() (SimiLab.tempName method), 3
getEvolByStep() (SimiLab.tempName method), 3
getSim() (SimiLab.tempName method), 3
getVector() (SimiLab.tempName method), 3
getVectorPosNeg() (SimiLab.tempName method),

4

P
projectMatrices() (SimiLab.tempName method),

4

T
tempName (class in SimiLab), 1

7


	Getting Started
	Indices and tables
	Index

